Читаем Солнечные элементы полностью

Квантовый выход внутреннего фотоэффекта для кремния был изучен с помощью прецизионной установки, позволявшей одновременно измерять ток короткого замыкания полупроводниковых кристаллов с p-n-переходом и суммарное (диффузное+зеркальное) отражение от их поверхности. Спектр падающего на кристалл оптического излучения изучался с помощью зеркального монохроматора, для создания заданной температуры кристалла применялись криостат и электрическая печь, а для определения энергии квантов — калиброванный термостолбик. Отраженное от поверхности кристаллов излучение в видимой и ультрафиолетовой областях спектра (до длины волны 0,25 мкм) регистрировалось пластинкой с люминофором и установленным за ней фотоумножителем.

Квантовый выход внутреннего фотоэффекта при этом рассчитывался по формуле

?=I? 31/ (1-r) qN0?,

где q — заряд электрона, поскольку I? 31 выражен в энергетических единицах.

Эти измерения были выполнены на кристаллах с р-n-переходом, в которых фотоэлектрический эффект обнаруживается сразу — по генерируемому в цепи току без приложения внешнего напряжения. Обеспечивались условия, когда эффективность собирания носителей ?=l (или по крайней мере сохраняет постоянное значение во всем использованном диапазоне спектра), чтобы при расчете можно было пользоваться приведенной выше формулой. В связи с этим для экспериментов выбирались кристаллы с большой диффузионной длиной неосновных носителей заряда в верхнем легированном слое L?. Глубина залегания p-n-перехода lлбыла небольшой, и соблюдалось условие L?l?. К тому же эксперименты проводились только в видимой и ультрафиолетовой областях спектра.

В результате анализа полученных экспериментальных данных был сделан вывод, что в широком диапазоне энергии падающих квантов (Eg hv 2Eg) квантовый выход ?, обусловленный фотоионизацией, в кремнии равен единице. При большой энергии квантов падающего излучения (hv2Eg, т. е. в ультрафиолетовой области спектра) ? начинал резко возрастать, что, вероятно, объясняется процессом ударной ионизации — возникновением вторичных пар электрон — дырка за счет избыточной кинетической энергии первичных пар.

Таким образом, можно считать, что первый акт взаимодействия оптического излучения с полупроводником (внутри кристалла) происходит практически без потерь с эффективностью, близкой к 100 %, в широкой области спектра,

Однако в большинстве полупроводников, использующихся для создания солнечных элементов, несмотря на равный единице квантовый выход ионизации (а также при ?l в ультрафиолетовой области) с увеличением энергии квантов возрастают потери в расчете на энергию одного кванта в силу конечного значения ширины запрещенной зоны обычного полупроводникового материала.

Переход к солнечным элементам более сложной структуры, которые будут описаны в гл. 4 настоящей книги, например на основе каскадных систем, или к элементам с контролируемым градиентом ширины запрещенной зоны по глубине (большой у поверхности полупроводника и уменьшающейся в глубь материала, что отвечает спектральной зависимости коэффициента поглощения) позволяет полностью избавиться от таких оптических и энергетических потерь и увеличить КПД преобразования солнечного излучения в электрическую энергию.

Оптические излучения различных длин волн проникают на разную глубину (поскольку эта величина существенно зависит от энергии квантов) и создают свое пространственное распределение рожденных светом пар электрон — дырка (см. рис. 2.1).

Дальнейшая судьба рожденных пар зависит от их диффузионной длины в данном полупроводниковом материале. Если она достаточно велика, то созданные светом избыточные неосновные носители заряда успеют (даже без участия тянущего электрического поля) только за счет процесса диффузии дойти до области p-n-перехода и будут разделены его полем.

Решающую роль в эффективности этой стадии преобразования оптического излучения внутри полупроводника играет соотношение между диффузионной длиной L и расстоянием от p-n-перехода l, на котором создаются светом пары электрон — дырка.

Рассмотрим два крайних случая расположения p-n-перехода в полупроводниковом кристалле по отношению к направлению падения оптического излучения: перпендикулярно (рис. 2.6, а) и параллельно (рис. 2.6, б). Условимся, что в первом случае свет проникает на всю глубину кристалла и I равно толщине полупроводниковой пластины, а во втором — освещается вся поверхность пластинки шириной d.

Pис. 2.6. Схема расположения p-n-перехода в полупроводниковом кристалле при перпендикулярном (а) и параллельном (б) плоскости p-n-перехода падении оптического излучения

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука