Читаем Солнечные элементы полностью

Однако при градуировке эталонов на согласованном в международном масштабе спектре требуется соответствие ему спектра наземного солнечного излучения, использованного при измерениях, не только по значению воздушной массы, но и по остальным параметрам: плотности потока излучения, коэффициенту мутности и селективности, количеству осажденных паров воды и озона. Сравнение спектра солнечного излучения, измеренного в день проведения испытаний в высокогорных условиях, со стандартным позволяет внести необходимую поправку в значение тока эталонов, определенное по зависимости, подобной показанной на рис. 3.2, для любых значений абсолютной воздушной массы. Тем самым удается на основании результатов высокогорных измерений получить достаточно точные градуировочные значения тока эталонных элементов для оценки параметров наземных солнечных элементов. Приведение к стандартному спектру может быть также осуществлено без детального исследования спектра солнечного излучения в определенный день — достаточно знать глубину нескольких характерных полос в спектре, что позволяет оценить содержание водяных паров, озона и аэрозолей в этот день.

Как правило, результаты градуировки эталонных солнечных элементов несколькими методами сравниваются между собой и показывают достаточно хорошее совпадение получаемых значений.

Измерения в наземных, лабораторных

и космических условиях

Наземные параметры солнечных элементов в зависимости от условий измерения изменяются: по мере увеличения воздушной массы, возникновения пасмурности, облачности, дымки, появления капель дождя КПД солнечных элементов, как правило, значительно растет, хотя абсолютное значение генерируемой ими мощности падает. Причину этого явления легко понять из сравнения кривых спектрального распределения энергии солнечного излучения при различных атмосферных массах (см. рис. 3.3): при увеличении значения атмосферной массы от 1 до 5 плотность потока излучения падает, но максимум проходящего сквозь атмосферу излучения сдвигается вправо, приближаясь к максимуму спектральной чувствительности солнечных элементов из кремния и арсенида галлия.

В июне 1982 г. в г. Будапеште на имитаторе наземного солнечного излучения были проведены совместные советско-венгерские измерения вольт-амперных характеристик и КПД солнечных элементов в лабораторных условиях.

Источником света в имитаторе служила ксеноновая лампа высокого давления, спектр которой коррегирован интерференционным фильтром. Настройка имитатора осуществлялась с помощью эталонного солнечного элемента (чувствительная поверхность 30x35 мм), разработанного п отградуированного в СССР. Конструкция эталона, как уже указывалось, предложена в качестве стандартной для стран СЭВ. Градуировка проведена для наземных условий AM1,5 (плотность прямого потока 850 Вт/м2) и для условий AM1 (плотность потока 1000 Вт/м2).

При работе на имитаторе использовался разработанный Институтом электротехнической промышленности ВНР прибор для автоматического измерения и записи вольт-амперной характеристики, в комплект которого входит мини-ЭВМ, что позволяет одновременно определить оптимальные параметры солнечных элементов.

В приборе использован четырехзондовый метод съема тока с отдельной цепью подключения вольтметра, который позволяет значительно точнее по сравнению с двухзондовым (см. рис. 2.8) измерить напряжение на солнечном элементе. Поскольку в цепи вольтметра при четырехзондовой схеме протекает очень малый ток, падение напряжения на сопротивлении перехода между контактом солнечного элемента и токосъемным зондом и на сопротивлении проводов ничтожно, и, следовательно, вольтметр регистрирует напряжение, которое установилось непосредственно на солнечном элементе. Как показали эксперименты, для элементов площадью 5,4 см2 при стандартной плотности потока излучения и I= 160 мА разница в КПД, измеренных двумя способами, не отмечается; при площади 10,5 см2 и I=300 мА КПД по двухзондовой схеме составляет 12,1 вместо 14,1 % по четырехзондовой схеме. Если площадь элемента 24 см2 и ток короткого замыкания 670 мА, разница при измерениях по двум схемам еще больше (КПД 8,1 и 11,3 % соответственно).

В любом варианте электрической схемы по мере увеличения переходного сопротивления контакт солнечного элемента — токосъемный зонд, сопротивления проводов и внутреннего сопротивления амперметра измерения параметров солнечного элемента будут проводиться в области вольт-амперной характеристики, все более удаленной от точки короткого замыкания, и для элементов с высоким последовательным сопротивлением ошибка измерений будет весьма ощутимой.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука