Читаем Солнечные элементы полностью

При измерении характеристик солнечных элементов, предназначенных для космоса, в качестве стандарта повсеместно приняты условия, соответствующие условиям солнечного облучения плоскости, расположенной по нормали к направлению на Солнце и удаленной от неги на расстояние, равное одной астрономической единице (среднее расстояние от Земли до Солнца). Энергетическую облученность Ec, соответствующую этим условиям (фактически, условиям площадки, расположенной на границе между атмосферой Земли и космосом), называют солнечной постоянной. Угловой размер Солнца при этом составляет 31?59?, следовательно, в каждую точку освещаемой элементарной площадки попадает пучок лучей, заключенный в конусе с углом ±16?. Поток излучения идеально однороден.

На протяжении последних пятидесяти лет принятое значение солнечной постоянной уточнялось не один раз: в 1923 г. в первых работах по солнечным элементам использовалось 1350 Вт/м2, предложенное К. Дж. Абботом; в 1954 г. Ф. Джонсон получил 1393 Вт/м2; в начале 70-х годов в качестве стандарта было выбрано 1353 Вт/м2, выведенное в США ?. П. Такаекарой; в настоящее время наиболее достоверным считается 1360 Вт/м2, определенное в СССР Е. А. Макаровой и А. В. Харитоновым.

Зная абсолютное значение солнечной постоянной, можно найти энергию, которая поступила на поверхность солнечных элементов и батарей, работающих во внеатмосферных условиях, что требуется при расчетах их КПД. Однако, чтобы определить полезную электрическую энергию, полученную от солнечного элемента, необходимо точно измерить также спектральное распределение падающей радиации, особенно в интервале спектральной чувствительности современных солнечных элементов (для элементов из кремния — от 0,3 до 1,1 мкм).

Спектральное распределение энергии излучения Солнца неоднократно измерялось как с поверхности Земли, так и непосредственно за пределами атмосферы.

Анализ разнообразной научной информации о характеристиках солнечного излучения дает все основания отдать предпочтение спектральному распределению, предложенному Макаровой и Харитоновым, которое приводится в табл. 1 Приложения.

Именно это распределение используется сейчас и Европейским космическим центром при определении КПД солнечных элементов.

Изменение солнечной постоянной вследствие цикличности солнечной активности изучалось многими исследователями. Анализ наземных измерений солнечной постоянной показывает, что среднее квадратическое отклонение результатов ее определения, связанное с явлениями, происходящими на Солнце, составляет ±0,1 %, а с возможными колебаниями поглощения радиации внутри орбиты Земли — ±0,14 %. Высотные измерения показали, что во вторую половину 22-летнего солнечного цикла солнечная постоянная изменилась не более чем на 0,75 %. Дальнейшие исследования с помощью аппаратуры, установленной на ориентируемых космических станциях, позволят определить изменения солнечной постоянной за больший период времени.

Реальные условия эксплуатации батарей космического назначения незначительно отличаются от условий, принятых в качестве стандарта. Спектральное распределение энергии излучения (среднее по диску) постоянно по всей области пространства, где работают космические аппараты. Угловая расходимость пучка отличается не слишком сильно, составляя на среднем расстоянии орбиты Меркурия около ±42?, Венеры ±22?, Марса ±11?, Юпитера ±3?. По вычислениям, выполненным применительно к астрономическим условиям, характерным для 80-х годов нашего столетия, при солнечной постоянной 1360 Вт/м2 плотность потока солнечного излучения на границе атмосферы Земля изменяется от среднего значения в пределах ±3,5 % — от 1406 Вт/м2 в начале января каждого года, когда Земля находится на минимальном расстоянии от Солнца, до 1315 Вт/м2 в июле, когда Земля расположена в дальней точке орбиты.

Для прогнозирования выходной мощности расположенных на низколетящих спутниках Земли батарей, состоящих из солнечных элементов, способных преобразовывать в электрическую энергию и ту часть солнечного излучения, которое может попасть на тыльную поверхность батареи, необходимо знать интегральный коэффициент отражения солнечного излучения от поверхности Земли (альбедо Земли). Величина альбедо может колебаться в зависимости от рельефа местности, состояния атмосферы и облачности в значительных пределах: от 0,1 (ясная погода) до 0,9 (Земля покрыта плотным слоем облаков). Обычно в среднем альбедо Земли для большинства орбит низколетящих спутников составляет 0,35—0,3.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука