Читаем "Теорія та методика навчання математики, фізики, інформатики. Том-1" полностью

Чтобы получить достоверную и оперативную информацию об уровне знаний учащихся, я предпочитаю использовать схему продвижения учащегося по «лестнице деятельности» в процессе его подготовки к тематической аттестации. Эта схема была разработана и апробирована в Центре тестирования и оценке достижений г. Вологды. Естественно, что в процессе работы эта схема дополнялась и конкретизировалась с учётом реалий.

В качестве примера я приведу схему контроля за результатами обучения по теме: «Показательная функция».

1) Базовый тест.

Предполагает такие уровни знаний, как репродуктивный и алгоритмический.

Этот тест я провожу сразу же после ознакомления с показательной функцией, рассмотрение её графика и свойств.

2) Диагностические самостоятельные работы предполагают следующие уровни знаний:

репродуктивный;

алгоритмический;

эвристический;

творческий.

Как правило, я провожу не менее 2–3 диагностических работ (в зависимости от объёма и сложности темы). В теме «Показательная функция» такого типа задания предлагаются после ознакомления учащихся с методикой решения показательных уравнений и неравенств. Диагностическая работа №1 – это, как правило, работа в группах (класс разбит на 5 динамических групп). Преимущества работы в группах состоят в том, что каждый ученик получает задание в соответствии со своим уровнем подготовленности, способностями, жизненным и учебным опытом.

Диагностическая работа №2 – это индивидуальная самостоятельная работа.

Диагностические работы позволяют не только выявить пробелы в знаниях по теме, но и определить уровень её усвоения, учебные возможности учащихся.

3) Предварительная тематическая аттестация.

Она проводится в конце изучения темы, позволяя зафиксировать объём и уровень ёё усвоения, выявить типичные ошибки. Проверка также ориентирует учителя в недочётах и достижениях его преподавания. Такого рода промежуточная аттестация даёт не только информацию для учителя, но и позволяет учащемуся лучше узнать самого себя, оценить свои знания и возможности.

Формы её проведения могут быть самыми разнообразными:

контрольная работа;

тематический тест;

тематический зачет;

устно-письменная работа;

устная контрольная работа и т.д.

Хотелось бы подробнее остановиться на так называемой устной контрольной работе. Проводиться она, как правило, в 5–6 классах, и способствует развитию вычислительных навыков, обучению рациональным приемам счета. Работа организуется следующим образом.

Задания заранее записываются на плакатах в виде блок – схем. Вопросы формулируются не в виде «найдите число». С каждым числом – конечным результатом, связана та или иная информация. Например:

+8,8 -9,8 +8 - 6,2 +4,2

Возможные ответы: щука – 4,3; налим – 3,5; сом – 12; карась – 3; окунь – 6,1.

Учащийся должен выбрать рыбу из списка, записать в блокноте под копирку номер задания и ответ к нему (слово). Выполнив все задания, ребята вырывают и сдают 1-й лист учителю, а по 2-му проверяют ответы. В конце урока ученики с большим интересом воспринимают комментарии к ответам из других областей знания (биологии, географии и т.п.).

И завершает изучение темы

4) Итоговая тематическая аттестация.

Формы ее проведения такие же, как и при проведении промежуточной аттестации.

Подобная система оценивания знаний способствует реализации индивидуального подхода в обучении, повышению эффективности учебно-воспитательного процесса.

ПРИЛОЖЕНИЯ ТЕОРЕМЫ ЛАГРАНЖА

К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ ФУНКЦИЙ

В.В. Корольский

Кривой Рог, Криворожский государственный педагогический университет

Рассматриваем функцию f( x), непрерывную на промежутке [ a, b] и дифференцируемую в точках x ] a, b[. Представим [ ab] как сумму элементарных частей вида [( n -1) α, ]:

[ a, b] = , (1)

где: n, kN; α=.

На каждом промежутке [( n -1) α, ] f( x) удовлетворяет условиям известной теоремы Лагранжа. Следовательно, можно записать:

(2)

Если подобрать αтак, чтобы вычисление значений функций f( a), f( a+ α), f( a+ 2 α), ..., f( a+ ( k– 1) α) сводилось к минимуму самых элементарных операций, то на основании равенств (2) получаем достаточно простую схему приближенных вычислений f( x) для x] a+ ( n– 1) α; [, :

(3)

В результате приходим к интерполяционному многочлену с равностоящими узлами интерполяции и шагом интерполяции α:

(4)

Поскольку рассматривается задача приближенного вычисления отдельных значений функции f( x), то для практических целей более целесообразно пользоваться формулой:

(5)

Выбор αзависит от вида функции f( x) и необходимой точности вычислений ее приближенных значений. Как правило, αвыбирается кратным 2, 5 или 10, но возможны и другие варианты. Для x = a + nαимеем

f( x) = f( a + nα), где n= 0, 1, ..., k.

Рассмотрим в качестве примера применение формулы (5) для приближенных вычислений функций f( x) = a x ( a >0 ; a ≠1) и f( x) = е х.

Полагаем, что x [0; ∞[. Тогда имеем:

(6)

где α =1/ l, l =1, 2, 4, ... и т.п.

Запишем (6) в следующем виде:

, (7)

где множители и унифицируются:

и т.д.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное