Читаем Жар холодных числ и пафос бесстрастной логики полностью

Следует, правда, отдавать себе отчет в том, что построить такую строгую логическую систему — первую формальную систему в истории наук и, не прибегая к специальному языку знаков, Аристотель смог потому, что его силлогистика описывает лишь часть, причем очень простую, тех логических закономерностей, которым подчиняется мышление и язык. Тем не менее Аристотелева логика[12], как теперь все более начинают осознавать историки математики, оказала большое влияние на древнегреческую математическую мысль. Есть указания на то, что дедуктивный способ построения эллинской геометрии, знаменовавший собой один из важнейших ранних этапов развития математики и оказавший неизмеримое влияние на всю последующую науку (Декарт считал математику образцом для всех наук, Спиноза построил свой знаменитый философский тракт «Этика» по типу «Начал» Эвклида и пр.), не породил аристотелеву логику, как об этом часто писали, а был порожден развитием логики, в одном из своих фрагментов получившей столь завершенную трактовку у Аристотеля. Много раньше, чем цепочки безукоризненных по форме силлогизмов, начинающихся на недоказываемых положениях и кончающихся на утверждениях доказываемых, стали относиться к линиям и фигурам, они широко использовались в применении к самым различным объектам в бесчисленных словесных «упражнениях», подобных тем, к которым призывал Сократа Парменид. Вот что говорит об этом наш современник венгерский математик и логик Ласло Кальмар: «Большинство математиков, включая некоторых историков математики, считают, что дедуктивный способ вывода фактически был изобретен математиками. Однако А. Сабо установил факт сильнейшего влияния элейской диалектической философии на древнегреческую математику, показав, что многие математические понятия, особенно те, которые относятся к дедуктивному методу, берут свое начало в диалектике элеатов... Таким образом, дедуктивный вывод, по-видимому, до математики изобрела философия»[13].

Нет сомнений относительно влияния, которое оказала логика — и особенно логика Аристотеля, создавшего не только силлогистику, но и заложившего основы общей теории аксиоматического (дедуктивного) метода (он изложил их во «Второй аналитике»), — на математику[14]. Таким образом, современный синтез математики и логики начал подготовляться еще в античную пору.

Рис. 1. Историческое развитие языково-мыслительных и математико-формализованных средств познания.

Подводя итог сказанному в этой главе, приведем схему подготовки и развития формализованных средств научного исследования, сделавших возможными современные достижения кибернетики и логики (рис. 1).

Как мы видим, все и в самом деле началось с обычного слова, с обиходного языка — необходимого условия мышления. В языке, этом драгоценнейшем из богатств человечества, образовались зародыши формализованного аппарата: с одной стороны, формальная логика, с другой стороны, арифметика (выразительные средства для описания чисел и их отношений) и доэллинская геометрия (средства для описания линий и фигур и их свойств). На определенной стадии культурного развития эти механизмы были экстрагированы из языка и стали развиваться самостоятельно, Эвклидову геометрию можно считать первым важным результатом их взаимодействия. Но в дальнейшем пути математики и логики сильно разошлись, и в течение многих столетий их считали совсем разными областями знания (настолько разными, что логику, как правило, причисляли к «гуманитарным» наукам, то есть к чему-то прямо противоположному наукам «точным», ядром которых является математика). Это произошло главным образом потому, что математика рано обрела формальные выразительные средства (символика алгебры, аналитической геометрии, а затем анализа), заговорила «на своем языке» и стала расти с исключительной интенсивностью. Логика же как бы временно зашла в тупик: ее изучение проводилось в основном на естественном языке, а это не давало больших результатов, ибо возникал своего рода порочный круг. Вспомним, что специфическая ценность логики заключается именно в тех особенностях, которые отличают ее от общеязыковых средств (это поняли еще древние), а исследовать и развивать ее пришлось этими же общеязыковыми средствами. Правда, уже Аристотель применял буквы для выражения структуры суждений и умозаключений, причем применял точно так же, как они ныне употребляются в математике (то есть как символы, на место которых можно подставлять объекты различного конкретного содержания). Но это был лишь первый шаг по направлению к «внеязыковой» формализации логики. Некоторые дальнейшие шаги (использование диаграмм) были сделаны средневековыми схоластическими логиками, развивавшими античную логическую традицию. Но далеко логика все же не могла уйти — у нее не было своей символики, ее душила немота.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное