Читаем Жар холодных числ и пафос бесстрастной логики полностью

Так что же оставалось делать Платону или элеатам? Использовать тот примитивный математический язык, который существовал в их время? Он был слишком маломощен для тех серьезных целей, которые ставили перед собой эти философы: они ведь стремились исследовать основные проблемы бытия и духа. И они нашли выход: в обычном человеческом мышлении и его выражении — естественном языке (в целом неподходящем для их серьезных задач) они отыскали такую часть, бесстрастную и однозначно действующую, которая нужна для их целей, логику. Эта часть мышления и языка, хотя она и не была формализован а, то есть представлена с помощью какой-либо символики, тем не менее была достаточно надежна, поскольку состояла из правил — схем, форм рассуждений, фактически всегда присутствующих в мышлении и языке (отсюда прилагательное «формальная» в термине «формальная логика»). Учитывая это, можно сказать, что работы Платона (и других эллинских мыслителей того же ранга) удовлетворяют «критерию научности» Канта в том смысле, что проведены они с помощью схематизма (формализма) логики, употребляемого как инструмент научного исследования. Для строгого согласия с Кантом, правда, нужно признать этот формализм принадлежащим математике. Допущение, что в логических (то есть мыслительных, относящихся к рассуждениям) формах обычного языка с древнейших времен был заложен математический аппарат, ещё недавно показалось бы странным. Однако сейчас, в эпоху великого соединения математики и логики, это уже не удивляет.

Здесь мы должны, наконец, сказать об Аристотеле. В чем состоял его вклад, если логические схемы — правила рассуждений (во многом, во всяком случае) — были выделены до него? Прежде всего в том, что он их систематически описал в серии трудов, составляющих знаменитый «Органон»[9]. В важнейшем из этих трудов — «Первой аналитике» — была изложена силлогистика (система силлогистических умозаключений, или силлогизмов) — главное достижение Аристотеля в логике, от которого идет теория логики, то есть логика как наука.

Приведем один из аристотелевских силлогизмов: «если А приписывается всем Б, а Б — всем В, то А необходимо приписывается всем В», например, если свойство быть живым существом (А) приписывается всем двуногим существам (Б), а свойство двуногости (Б) приписывается всем людям (В), то свойство быть живым существом (А) необходимо приписывается всем людям (В)[10]. Это силлогистическое умозаключение — самая знаменитая форма (модус) силлогизмов: Barbara (латинские названия модусов были придуманы в средние века). Следует обратить внимание на то, что Аристотель выделяет именно форму: силлогизм Barbara — то, что нами выделено разрядкой, это схема умозаключения (дедуктивного вывода, дедукции), а рассуждение, приведенное вслед за этой схемой, есть только пример ее применения.

Здесь мы ясно видим тот гигантский шаг вперед, который делает Аристотель по сравнению с Платоном: у Платона логические правила функционируют только в конкретных рассуждениях, Аристотель же отделяет их от содержания и делает предметом специального исследования. Именно, Аристотель, используя специальную терминологию, создает систему силлогизмов, охватывающую все правильные силлогистические умозаключения, то есть правила силлогистического вывода, позволяющие получать из верных посылок с необходимостью из них вытекающие верные заключения.

Силлогистика была главным достижением Аристотеля в логике, достижением, принадлежавшим, как можно полагать, ему лично. Она развертывается как аксиоматическая система — о такого рода построении мы будем подробно говорить в последующих главах — и (что самое поразительное!) удовлетворяет, по существу, критериям математической строгости, предъявляемым к современным формализованным системам. Она, таким образом, была более строгой, чем все математические теории античности, например, строже, чем знаменитые «Начала» Эвклида. Известный польский логик XX века Ян Лукасевич говорил по этому поводу: «Силлогистика Аристотеля является системой, точность которой превосходит даже точность математической теории, и в этом ее непреходящее значение»[11]. Удивительно, что этой точности Аристотель достиг, не используя специальную символику, а прибегая лишь к стандартизации обычного (греческого) языка, то есть опираясь в изложении системы на термины с четким смыслом да оперируя буквами греческого алфавита в качестве переменных для тех понятий («живое существо», «двуногое» и т. п.), которые появляются при применениях силлогистических форм.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное