Проследим за формой световых конусов на рис. Д1. Вне горизонта наклон «лепестков» превосходит 45°, на горизонте он равен 45°, а под горизонтом становится все меньше: конусы сужаются при приближении к «центру». Поскольку распространение лучей света происходит как раз по направлению конусов, а материальных частиц — по мировым линиям внутри конусов, то ясно, что вне горизонта r = rg возможно движение с удалением от горизонта во внешнюю область. По достижении горизонта такое движение невозможно. Под горизонтом становится неизбежным движение к «центру».
6. Система отсчёта ускоренных наблюдателей
После того как определены понятия пространства Минковского в главе 5, собственного времени в главе 7 и горизонта событий в главе 8, интересно обсудить пространство–время ускоренных наблюдателей. Пусть один из таких наблюдателей движется прямолинейно вдоль оси х в пространстве Минковского с постоянным ускорением с2/Х в направлении х. Пусть таких наблюдателей много и их ускорения меняются от бесконечности до нуля, что соответствует изменению X от 0 до ∞.
Рис. Д2. Мировые линии ускоренных наблюдателей
На рис. Д2 на диаграмме пространства Минковского в лоренцевых координатах х и t изображены мировые линии таких ускоренных наблюдателей: каждому наблюдателю соответствует своё значение X. Чем больше ускорение наблюдателя, тем его мировая линия ближе к началу координат. Ускорение каждого из них направлено в сторону увеличения х. Поэтому изначально двигаясь к началу координат, они снижают скорость до нуля при t = 0, а затем движутся в обратном направлении.
Поскольку скорости этих наблюдателей не могут превысить световые, то их мировые линии ограничены световыми конусами: А-0 и 0A+, они вместе образуют так называемый «угол Риндлера». Кроме того, угол Риндлера — это предельная мировая линия наблюдателя, ускорение которого стремится к бесконечности, Эти конусы имеют смысл горизонта событий. Конус А-0 является горизонтом событий прошлого — ускоренные наблюдатели никак не могут повлиять на события за этим горизонтом. Конус 0A+. является горизонтом событий будущего, поскольку ускоренным наблюдателям недоступны для наблюдения события за этим горизонтом. Этот горизонт аналогичен горизонту шварцшильдовой чёрной дыры, в чем легко убедиться, сравнив рис. Д2 с диаграммой в координатах Леметра на рис. Д1.
Точно так же, как была представлена пространственно-временная диаграмма для сопутствующих наблюдателей в координатах Леметра, можно представить пространственно–временную диаграмму для равномерно ускоренных наблюдателей. Для этого каждому такому наблюдателю сопоставляют свою пространственную координату со значением X. Тогда метрика пространства Минковского (вернее его части, заключённой в углу Риндлера), в координатах этих ускоренных наблюдателей принимает форму:
Здесь Х0 — произвольный пространственный масштаб, позволяющий сохранить размерность, кроме того, для наблюдателя, у которого X = Х0, эта система является локально лоренцевой. Эти координаты введены американским физиком Вольфгангом Риндлером, и представлены на диаграмме на рис. Д3. Каждому ускоренному наблюдателю соответствует вертикальная прямая с соответствующим значением X. Вертикальная прямая X = 0 соответствует горизонту Риндлера. Если время Т является координатным временем в системе Риндлера, то собственным временем для ускоренного наблюдателя является τ = (g00)1/2T = XT/Х0 как это было определено в главе 7.
Для ускоренного наблюдателя с параметром Х0 собственное время совпадает с координатным. Собственное время ускоренных наблюдателей идёт тем быстрее, чем больше X, и тем медленнее, чем меньше X.
Рис. ДЗ. Координаты Риндлера
В этом проявляется сильный принцип эквивалентности (глава 6) — ускорение имитирует действие гравитационного поля, где ход часов замедляется тем сильнее, чем больше потенциал.
На горизонте собственное время «замораживается», в этом смысле ситуация аналогична поведению собственного времени для наблюдателей в пространстве–времени шварцшильдовой чёрной дыры. Если мы проследим за формой светового конуса, то для наблюдателя Х0 его «лепестки» наклонены под «стандартным» углом 45° (это как раз потому, что для него система Риндлера оказалась локально лоренцевой). Для больших X угол наклона «лепестков» увеличивается, для меньших X — уменьшается. На горизонте «лепестки» световых конусов вообще слипаются, точно также, как на горизонте на диаграмме Шварцшильда, см. рис. 8.2. Горизонт в метрике Риндлера представляет лишь координатную особенность, как и горизонт в координатах Шварцшильда. Но поскольку система ускоренных наблюдателей — это система в пространстве Минковского, то в отличие от решения Шварцшильда, «решение Риндлера» не имеет истинной сингулярности.