Величина va (набор значений) с одним индексом называется тензором 1–го ранга. Поле скаляра, в отличие от вектора, в каждой точке пространства, независимо от его размерности, имеет одну компоненту (функцию от пространственных координат) и записывается как величина без индексов, скажем, ν. Скаляр, как величина без значков, является тензором нулевого ранга, В тексте очень часто встречается понятие метрического тензора gab, который и описывает гравитационное поле. Теперь, имея представление о векторе и скаляре, как о тензорах, смело можно говорить, что метрика — это тензор 2–го ранга и все его компоненты объединены в матрицу. В 4–мерном пространстве–времени это выглядит так:
В силу симметрии gab = gba независимых компонент из 16–ти остаётся 10. Поле метрического тензора задано, если в каждой точке пространства–времени задано 10 функций, представляющих эту матрицу. Аналогичные рассуждения справедливы для других тензоров второго ранга. Если бы мы хотели рассмотреть какой‑нибудь тензор 3–го ранга, мы должны были представить величину с 3–мя индексами, а ей сопоставить 3–мерную матрицу (куб). Важно отметить, что все тензоры обладают общим свойством: при преобразованиях координат они преобразуются по специальному тензорному закону, сохраняя свою прежнюю структуру. Нетензорные величины при преобразованиях координат обычно приобретают дополнительные (по отношение к тензорным) слагаемые.
2. Материальные источники
В тексте обсуждается и утверждается, что искривление пространства–времени — это результат воздействия материальных источников. Что они собой представляют и как представлены формально? Эти источники являются материей в самом общем понимании. Они включают в себя все вещество, которое может быть сосредоточено в отдельных телах или распределено дисперсно, и все возможные поля, как статические, так и поля излучения. Обсуждая специальную теорию относительности, мы уже отметили, что энергию и импульс в релятивистской теории нельзя рассматривать отдельно, а правильно рассматривать мерный вектор энергии–импульса, скажем, материальной частицы. Но оказывается, что в искривление пространства-времени свой вклад вносят и другие характеристики материи, такие как напряжения внутри тел, давление Все вместе они образуют тензор энергии–импульса материи Тab.
Далее нам необходимо вспомнить об уравнении непрерывности. Суть его в том, что изменения со временем плотности вещества в данной точке равно скорости притока и оттока со всех сторон. Это один из законов сохранения, иначе его называют уравнением баланса, и он является следствием уравнений движения для вещества. Обобщение этого закона для всего тензора энергии- импульса в искривлённом пространстве–времени означает, что он также должен удовлетворять закону сохранения.
3. Построение уравнений Эйнштейна
Теперь мы в состоянии построить уравнения гравитации в ОТО. Как мы рассказали в главе 6, в начале XX века было постулировано, что гравитационное взаимодействие выражается в искривлении пространства–времени. При этом пространство–время искривляется под воздействием материи, которая, в свою очередь, движется в этом искривлённом собой пространстве–времени. Это и есть логическая основа для построения уравнений общей теории относительности. Но как их построить правильно?
Логика очевидна: нужно связать тензор энергии- импульса материи с кривизной пространства–времени. Самый простой и очевидный способ: отнести Тab в правую часть уравнений, а левую определить как некую комбинацию компонент тензора кривизны. Но как это сделать? Дело в том, что все уравнения вместе (гравитационные уравнения и уравнения для материи) должны быть совместны, иначе не будет существовать решений. Но как мы уже отметили, анализ уравнений материи в искривлённом пространстве–времени приводит к выводу, что тензор энергии–импульс а материи должен удовлетворять закону сохранения (непрерывности). Но тогда, чтобы все уравнения были совместны, нужно найти такую комбинацию из величин, связанных с кривизной, и которую мы собираемся написать в левой части уравнений, чтобы она тождественно удовлетворяла такому же закону сохранения. Такая комбинация была найдена — это так называемый тензор Эйнштейна Gab, построенный из компонент тензора Римана, а в конечном итоге зависящий от метрического тензора. Тогда уравнения для гравитационного поля записываются в виде:
Gab= κТab.
Здесь κ — постоянная Эйнштейна, которая выражается через ньютонову гравитационную постоянную G и скорость света с: κ = 8πG/c4. Эти уравнения были построены и представлены Эйнштейном в работах 1915 и 1916 годов на основании соображений, изложенных выше. Практически одновременно они были представлены немецкими математиком Давидом Гильбертом.
4. Решение уравнений Эйнштейна