Читаем Стол находок утерянных чисел полностью

— Безусловно. Но называют их квадратными. И это уже совсем другой ряд чисел. Он образуется по другому закону. В ряду треугольных чисел каждое новое число обраауется так: первое треугольное число-1. Чтобы получить второе, прибавляем к единице следующее число натурального ряда 2: 1+2=3. Чтобы получить третье, надо прибавить к трём следующим после двух число натурального. ряда: 3+3=6. Далее, поступая каждый раз так же, получаем числа 10(6+4), 15(10+5), 21(15+6), 28(21+7), 36(28+8), 45(36+9), 55(45+10). Как видишь, каждое второе слагаемое в скобках есть следующее по порядку число натурального ряда. Ряд четырёхугольных чисел образуется иначе. Здесь к предыдущему квадратному числу всякий раз прибавляется не просто порядковое натуральное, а порядковое нечётное число. То есть взятое не из натурального ряда 1, 2, 3, 4, 5, 6 и т. д., а из ряда 1, 3, 5, 7, 9, 11 и т. д.

Но девочке надоело слушать, и она перешла от слов к делу: выложила квадрат из четырёх шаров и тут же заявила, что первое квадратное число — это 4.

— Ошибка, — заметил я. — Ты пропустила единицу. По правилам игры все фигурные числа непременно начинаются с фигуры, которая условно изображена шариком № 1. Во-вторых, почему ты думаешь, что 4 — число квадратное?

— Да потому, что оно стоит в последнем ряду справа, — ответила она.

Я усмехнулся и увеличил квадрат, пристроив справа к первой горизонтальной строке шар № 5, ко второй — № 6, а внизу прирастил ещё одну строку из шаров № 7, 8, 9. При этом шар № 4 оказался уже не в конце строки, а внутри квадрата. Девочку зто озадачило. Я снова увеличил квадрат. Теперь крайним справа оказался шар № 16. Потом № 25. Потом № 36…

И тут стало ясно, что квадратные числа расположены не в конце каждой строки, как в треугольнике, а наискосок, по диагонали. И это 1, 4, 9, 16, 25, 36 и т. д. Легко понять, что каждое следующее квадратное число есть сумма предыдущего и очередного нечётного числа натурального ряда: 4 (1+3), 9(4+5); 16(9+7), 25(16+ 9), 36(25+11) и т. д.

Любопытно, что каждое следующее квадратное число есть квадрат порядкового числа натурального ряда: 4=22; 9=32; 16=42; 25 = 52; 36=62 и т. д. И всякий раз основание степени указывает, из скольких строк построен квадрат. В первом 1 шар и 1 строка, во втором 4 шара и 2 строки, в третьем 9 шаров и 3 строки… Ну и так далее…

— Занятная игра, — вздохнула девочка, — но какая от неё польза?

— Такая же, как и от любой другой, — сказал я, пожав плечами. — Прежде всего, игра доставляет удовольствие. Но в то же время и тренирует наш мозг, нашу логику. А уж математические игры в особенности! Они приучают нас подмечать числовые зависимости, а это иногда ведёт к нешуточным последствиям. Такая сложная отрасль математики, как теория вероятностей, началась именно с игры, с желания угадать вероятность успеха. Что же до фигурных чисел, так ими увлекались ещё в древности. И это тоже привело к интересным открытиям. К примеру, древнегреческий математик Диофант установил, что если любое треугольное число умножить на 8, а потом прибавить к произведению единицу, то при этом обязательно получится число квадратное.

Конечно, девочка захотела это проверить. Она умножила треугольное число 3 на 8, получила 24, прибавила единицу и… получила квадратное число 25.

Я рассказал, что фигурными числами занимался ещё и Ферма. И он установил, что любое натуральное число можно представить суммой либо двух, либо трёх треугольных. Это легко проверить на тех треугольных числах, которые мы знаем: 1, 3, 6, 10 15, 21, 28, 36.

Возьмём натуральное число 17. Его можно представить суммой семнадцати единиц. Но это будет наибольшее число треугольных слагаемых. А Ферма имел в виду наименьшее. Ясно, что на сей раз это 15+1+1. Или: 10+6+1. На меньшее число треугольных слагаемых 17 не раскладывается. А вот число 20 может быть представлено в виде суммы двух треугольных чисел: 10+10…

— Посмотрите, — перебила меня девочка, — наш дорогой Главный терятель выложил шарики горкой!

— Лучше бы сказать, — пирамидкой, — уточнил тот. — Я получил её, положив в основание треугольник, состоящий из трёх шаров под номерами 1, 2, 3, а номер 4 положил сверху. И получил первые пирамидальные числа 1 и 4…

— Ничего подобного, — сказала девочка, — число 4 квадратное.

— Как видишь, не только квадратное, — возразил я. — Следующее по порядку пирамидальное число 10 в то же время и треугольное. Его мы получим, построив пирамиду с треугольным основанием из трёх строк и шести шаров под номерами с первого по шестой (№ 1–6). На этот треугольник нарастим меньший — из двух строк и трех шаров (№ 7, 8, 9). Сверху положим шар № 10. А зто и есть следующее после четырёх пирамидальное число. Новое пирамидальное число — 20 — получим, построив пирамиду с треугольным основанием из четырёх строк и десяти шаров под номерами с первого по десятый (№ 1-10), на вершине которой окажется шар № 20. Таким образом…

— Таким образом, всякий раз очередное пирамидальное число находится на вершине пирамиды, — подхватила девочка и, подумав, добавила: — А еще фигурные числа неразлучны с геометрией.

Перейти на страницу:

Похожие книги

115 сочинений с подготовительными материалами для младших школьников
115 сочинений с подготовительными материалами для младших школьников

Дорогие друзья!Сочинение – это один из видов работы по развитию речи, который предполагает самостоятельное, продуманное изложение вами своих мыслей в соответствии с требуемой темой.Работа над сочинением развивает мышление, речь, позволяет выразить свой взгляд на мир. Такой вид работы способствует осознанию окружающего мира, действительности, самих себя. Кроме того, сочинение учит аргументированно доказывать и отстаивать свою точку зрения.В данном пособии вы найдёте методику написания сочинений, а также различные виды сочинений с планами и подготовительными материалами.Не забывайте, что сочинение – это прежде всего творческая работа, которая не терпит шаблона. Советуем вам не использовать представленные в пособии сочинения для бездумного, механического переписывания их в свои тетради. Наши сочинения – это возможные варианты раскрытия определённых тем, которые, надеемся, помогут вам при создании самостоятельных текстов.Желаем успехов!

Ольга Дмитриевна Ушакова

Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей