В каком-то смысле слово «мозг» не совсем точное. Основная идея отца и сына Дарвинов состояла в том, что кончики – которые направляют корни под землей и ростки растений над ней – должны быть средоточием потоков информации, местом интеграции сенсорики и моторики, где определяется подходящее направление роста. То же применимо к гифам грибов. Кончики гиф – это части мицелия, которые растут, меняют направление, ветвятся и сливаются друг с другом. Они делают бóльшую часть работы. И они многочисленны. Отдельная грибница может иметь от сотен до миллиардов кончиков гиф, взаимодействующих друг с другом и обрабатывающих информацию одновременно и в больших количествах.
На кончиках гиф и вправду могут соединяться потоки данных ради определения скорости и направления роста. Но как кончики гиф в одной части мицелия «узнают», что делают их «коллеги» с противоположной стороны грибницы? Мы вынуждены снова вернуться к головоломке Олссона. Его панеллюс (
Есть несколько возможностей. Некоторые исследователи предполагают, что сети мицелия могут передавать сигналы о развитии, используя изменения в давлении или интенсивности потока. Ведь мицелий по сути есть замкнутая гидравлическая система, подобная тормозной системе автомобиля: внезапное изменение давления в одной части может, в принципе, быстро проявиться в другой. Некоторые ученые заметили, что метаболическая деятельность, например накопление и выделение химических соединений внутри гиф, может иметь форму последовательных импульсов, которые могут помогать синхронизировать поведение всей сети. Что касается Олссона, то он обратил внимание на одну из других немногих возможностей, а именно электричество.
Давно известно, что животные используют электрические импульсы, или потенциалы действия, для связи между разными частями своих тел. Нейроны – удлиненные нервные клетки, передающие информацию посредством электрических импульсов, которые координируют поведение животных, – изучает отдельная наука, нейробиология. Хотя так называемое животное электричество – прерогатива не только животных, не они одни умеют генерировать потенциалы действия. Это под силу еще растениям, в том числе водорослям, а в 1970-е годы стало известно, что и некоторым видам грибов. Бактерии тоже проводят электричество. Кабельные бактерии образуют длинные электропроводные нити – нитевидные нанокристаллы. В 2015 году установили, что колонии бактерий могут координировать свою деятельность, используя для этого волны электрической активности, подобные потенциалам действия. Однако немногие микологи допускают, что это явление может играть важную роль в жизни грибов.
В середине 1990-х годов на том же факультете Лундского университета в Швеции, на котором работал Олссон, группа ученых вела исследование в области нейробиологии насекомых. Они проводили эксперименты по измерению активности нейронов, вводя тонкие стеклянные микроэлектроды в мозг моли. Олссон с их разрешения воспользовался их оборудованием, чтобы ответить на простой вопрос: что произойдет, если заменить в эксперименте мозг моли на грибной мицелий? Нейробиологи были заинтригованы. В принципе, грибные гифы должны быть хорошо приспособлены к проведению электрических импульсов. Они покрыты белками, которые изолируют их: электроволны в теории могут перемещаться на большие расстояния, не рассеиваясь. Нервные клетки животных имеют аналогичную защиту. Более того, клетки мицелия последовательно соединены друг с другом, что, возможно, позволило бы импульсам, возникшим в одной части сети, достигать другой ее части без сбоев.