Если бы закон обратных кубов имел место на масштабах Солнечной системы, то ясно, что именно он был бы сформулирован Ньютоном. Значит нужно его искать на малых масштабах. Вместе с тем, проверка закона Ньютона важна и для некоторых перспективных многомерных теорий, где дополнительные размерности компактификацированы (свёрнуты) и их размеры, конечно, меньше планетарных. Тем не менее, они могут достигать десятков микрометров. Когда Рэндолл и Сундрум только предложили свою теорию, закон Ньютона был проверен лишь до масштабов в метры. С тех пор учёные сделали несколько сложнейших (ввиду слабости гравитации) экспериментов с крутильными весами крохотных размеров, и сейчас лабораторные ограничения существенно снизились и приближаются к размерам компактификации.
Современными измерениями установлено, что размер дополнительного измерения составляет не более 50 микрон. На меньших масштабах закон обратных квадратов может нарушиться. На рис. 12.5 представлена схема крутильных весов для проверки закона обратных квадратов Ньютона. Сам прибор помещён в вакуумную колбу, тщательно изолирован от шумов и снабжён современной электронной системой детектирования смещений.
Рис. 12.5. Крутильные веся для проверки закона обратных квадратов
Ясно, что подобного рода эксперименты сопряжены с колоссальными технологическими трудностями, и дальнейший прогресс связывают с вынесением эксперимента в космос. Дело в том, что малые коррекции закона Ньютона ведут также к расчётному смещению планетных перигелиев (наряду с эйнштейновским). Лазерная локация Луны подтвердила эйнштейновское смещение с точностью до 10–11 радиана в столетие. А вот уже в следующем порядке может проявить себя эффект некоторых многомерных моделей.
Первые попытки такой локации проводились в начале 60–х, как американскими, так и советскими исследователями. Но лазерный луч сильно рассеивался поверхностью, и точность измерений была невысока — до нескольких сот метров. Ситуация сильно изменилась после того как в рамках американских миссий «Аполлон» и советских «Луна» на Луну были доставлены уголковые отражатели, которые и используются до сих пор (к сожалению, советская программа по Луне была свёрнута в 1983 году).
Как это происходит? Лазер посылает сигнал через телескоп, направленный на отражатель, при этом точно фиксируется время, когда сигнал был излучён. Площадь пучка от сигнала на поверхности Луны составляет 25 км2 (площадь уголковых отражателей около 1м2). Отражённый от прибора на Луне свет в течение примерно одной секунды возвращается в телескоп, далее происходит отсев шумов. Современная точность измерения времени порядка 30 пикосекунд. Время путешествия фотона позволяет определить расстояние, и это сейчас делается с точностью около двух сантиметров, иногда точность достигает нескольких миллиметров. И это при расстоянии между Землёй и Луной 384 500 км!
А что если сам закон Ньютона нарушен на этих масштабах? Оригинальная теория МОНД была разработана израильским физиком Мордехаем Милгромом в 1983 году как альтернатива «тёмной материи». Отклонения от ньютоновского закона обратных квадратов по этой теории должны наблюдаться при определённом ускорении, а не на определённом расстоянии (вспомните теорию Хоржавы, где закон Ньютона изменяется из‑за влияния скоростей).